SOLUTIONS TO PRACTICE EXAM 1 EXTRAS, MATH 10560

1. . Find the integral

$$
\int \frac{3 x+1}{x^{3}+x^{2}} d x .
$$

Solution: Use partial fraction decomposition

$$
\frac{3 x+1}{x^{3}+x^{2}}=\frac{3 x+1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}=\frac{A x(x+1)+B(x+1)+C x^{2}}{x^{2}(x+1)} .
$$

Therefore

$$
3 x+1=(A+C) x^{2}+(A+B) x+B .
$$

It follows that

$$
\begin{gathered}
A+C=0, \quad A+B=3, \quad B=1, \\
A=2, \quad B=1, \quad C=-2,
\end{gathered}
$$

and

$$
\int \frac{3 x+1}{x^{3}+x^{2}} d x=\int\left(\frac{2}{x}+\frac{1}{x^{2}}-\frac{2}{x+1}\right) d x=2 \ln |x|-\frac{1}{x}-2 \ln |x+1|+C .
$$

2. Calculate the integral

$$
\int \frac{d x}{x+\sqrt[3]{x}}
$$

Solution: Make substitution $u=x^{1 / 3}$. Then $u^{3}=x$ and with $d x=3 u^{2} d u$

$$
\int \frac{d x}{x+\sqrt[3]{x}}=\int \frac{3 u^{2} d u}{u^{3}+u}=\int \frac{3 u d u}{u^{2}+1}=\frac{3}{2} \ln \left(u^{2}+1\right)+C=\frac{3}{2} \ln \left(x^{2 / 3}+1\right)+C .
$$

